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LElTER TO THE EDITOR 

Hill determinants and U N  theory 

J Killingbeck 
Physics Department, University of Hull, Hull HU6 7RX, U K  

Received 27 August 1985 

Abstract. A computationally efficient form of the Hill determinant method is devised, 
giving both E and (x’) values, and is used to test the accuracy of that method in the light 
of recent criticisms. I-’ and N-’  asymptotic theories are used to check the numerical results. 

The Hill determinant method for the calculation of the energy eigenvalues of the 
Schrodinger equation has recently been the subject of some controversy., Biswas et al 
(1971, 1973) used the method to calculate energy levels for the perturbed harmonic 
oscillator, but Flessas and Anagnostatos ( 1982) criticised their work on mathematical 
grounds, claiming that the Hill determinant approach can lead to erroneous eigenvalues. 
In fact the energy values of Biswas et aZ(1971,1973) can be checked by finite difference 
or other techniques and are of high accuracy, any small errors being attributable to 
the use of a fixed convergence factor exp(-fx’) in their postulated form of the 
wavefunction. The use of a factor exp( -$x’), with /3 variable, removes this difficulty 
(Banerjee 1978). Hautot and Nicolas (1983) examined the arguments of Flessas and 
Anagnostatos (1982) and concluded that they were based on a wrong estimate of the 
asymptotic amplitude of the wavefunction associated with the Hill determinant eigen- 
value. They concluded that the Hill determinant approach is fully justified on mathe- 
matical grounds. Killingbeck (1985a) commented on the controversy, taking the view 
that the most effective approach for the opponents of the method would be to produce 
an example which explicitly showed its failure. Chaudhuri (1985) has recently claimed 
to produce such an example. He treated a harmonic oscillator perturbed by a potential 
of form bx4+ cx6, with b < 0 and c > 0, and with a particular choice of the convergence 
factor exp( -ax4+ Px’) in the postulated wavefunction. He showed that, for a special 
choice of the various parameters, it is possible to force the Hill determinant to have 
no positive eigenvalues while the Schrodinger equation has one negative eigenvalue 
(-1) and an infinite number of positive eigenvalues. We have verified by computation 
that truncating Chaudhuri’s special case Hill determinant at any order gives the fixed 
eigenvalue - 1 and no other real positive eigenvalues. Chaudhuri’s convergence factor 
forces the matrix to be tridiagonal but leads to the production of wrong real eigenvalues. 
Firstly, we establish some useful mathematical properties of the Hill determinant 
approach and show how they are relevant to the points made by previous authors. 
Then we set out a very simple version of the Hill determinant approach and show that 
it leads to energy and (x’) values for a perturbed oscillator in any number of dimensions. 
Finally, we show both N - ’  and I - ’  type perturbation approaches for a perturbed 
oscillator, usiiig the results to verify that the Hill determinant method can indeed give 
accurate eigenvalues for the perturbed oscillator problem. 

0305-4470/85/161025 +06$02.25 @ 1985 The Institute of Physics L1025 



L1026 Letter to the Editor 

The most commonly used form for the wavefunction in the Hill determinant 
approach to perturbed one-dimensional oscillators is 

$( x )  = exp( - 4 p x ' )  1 A , , X ' ~ + ~  ( 1 )  

where p is the parity index (0 or 1 )  and p is varied to improve the rate of convergence 
of the resulting computations. When the ansatz ( 1 )  is used in a Schrodinger equation 
of the type 

M 

- D2$ + 1 Vmx2"$ = E$ 
1 

the result is a recurrence relation for the A , , .  For the case M = 2 ,  for example, the 
recurrence relation has the matrix form 

where E appears explicitly only in the diagonal d ,  terms. If the assumption A N  = 0 
is inserted into the recurrence relation, then the first N + 1 equations of the set (3)  are 
uncoupled from the rest and yield what looks like an ( N  + 1 )  x ( N  + 1 )  matrix eigenvalue 
problem. We denote by DN the determinant of the upper left square matrix which is 
isolated when eN is set equal to zero; inspection of (3) yields the recurrence relation 

DN = d N D N - 1  - ~ N - ~ C N D N - ~ ~ ~ N - ~ ~ N - I ~ N D N - ~  (4) 

e N A N  = - d N A N - ,  - C N A N - ~ -  b N A N - 2 .  ( 5 )  

and also shows that the recurrence relation for the A N  is 

Multiplying ( 5 )  by the product ( - l ) " e l e 2 .  . . e N - 1  reveals that the quantities 
( - l ) " e l e 2 .  . , and D N  obey the same recurrence relation and so may be taken 
to be proportional or equal, because of the arbitrary scaling factor which can be applied 
to the A,,. The relationship between the A N  and the D N  has been used by several of 
the authors whose work has already been cited, to transfer attention from the deter- 
minants DN to the sequence A N  and the wavefunction $ ( x )  which it produces. Flessas 
and Anagnostatos ( 1 9 8 2 )  pointed out that the A N  must tend to zero for any value of 
E as N tends to infinity, with the implication that no particular E values should be 
favoured by the requirement A N ( E )  = O .  We wish to make two points about this part 
of their argument. Firstly, it is indubitably true that the A N ( E )  tend to zero for any 
real E ,  but this simply means that for any finite x the function $ ( x )  of equation ( 1 )  
converges to a definite value; the power series approach (Killingbeck 1 9 8 5 b )  uses this 
to obtain accurate energies by varying E to make $ ( x )  zero on a boundary at x = L. 
Secondly, the Hill determinant approach actually finds E values E , ( N )  such that 
A N ( E )  = 0 for a fixed N and then checks whether the E , , ( N )  attain limiting values as 
N is increased; this leads to definite energy values even though the A N ( E )  for any 
fixed E tend to zero as N is increased. With regard to the problem of how + ( x )  
depends on x and E ,  the published literature contains conflicting views. Biswas e t  a1 
( 1 9 7 1 )  quoted formulae which appear to show that $ ( x )  is square integrable for any 
E, whereas Flessas and Anagnostatos ( 1 9 8 2 )  claimed to establish that $ ( x )  is not 
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square integrable for any E if the potential in (2) takes the form x 2 + A x 4  with p = 1 
and A > f. We might say that these two views represent opposite ends of the spectrum; 
Hautot and Nicolas (1983) took the view that the test AN(E)  = O  yields definite E 
values, together with A,  sequences which simulate the subdominant solutions of the 
recurrence relation (5); these subdominant solutions correspond to square integrable 
solutions of the Schrodinger equation (2). Hautot and Nicolas (1983) would thus 
regard as superfluous the suggestions of Flessas and Anagnostatos (1982) and of 
Chaudhuri (1985), that the E values for which AN(E)  = O  have to be further filtered 
by a special test which imposes square integrability conditions on the resulting @ ( x ) .  
The mathematical arguments of Hautot and Nicolas (1983) appear sound to us and 
also agree with our computational experience using simple convergence factors. Before 
setting out our computational procedure and results, we make a few comments about 
the way in which the present work differs from previous work. Firstly, we do not 
attempt to force the square matrix in ( 3 )  to be tridiagonal; the relationship between 
the DN and the AN remains valid, as our discussion showed, even when the b, or 
previous elements are non-zero. All that matters is that the only non-zero elements 
above the diagonal are the e,, i.e. we have an upper Hessenberg matrix. Secondly, 
since the AN recurrence relation is usually more simple than the DN one it is preferable 
to use it, varying E to make AN(E)  zero. Thirdly, by using the technique introduced 
by Killingbeck (1985a, b) it is possible to find the expectation values such as (x'), (x4), 
etc without reconstructing the A, sequence associated with an eigenvalue. The accurate 
computation of the A,, after E had been found, caused some difficulty for Biswas et 
a1 (1973); Hautot and Nicolas (1983) formulated a modified Miller algorithm to 
overcome the problem. We manage to bypass the difficulty by using the following 
approach. 

We start from the form of the Schrodinger equation when an angular spherical 
harmonic factor Y;" has been factored out of the wavefunction. In three dimensions 
the equation is 

-D24-2r -1D4+1(1+1)4+ V 4 = E 4  (6) 
where we take the radial potential V ( r )  to have the form 

V ( r )  = C  v ( m ) r m .  (7) 

The regular solution to (6) will behave as r' near the origin, so we postulate 4 of the 
form 

cc 

4( r )  = exp( -fpr') 1 A / + '  
0 

This yields the recurrence relation 

( n  + 2)( n + 21+ 3)A,,+z= [(2n +21+3)p - E]An -p2A, , - z+C V,A,,-,. 
(9) 

By differentiating (9) with respect to E and V,,, we can also obtain the recurrence 
relations for the quantities 

BN = dAN/dE, C ,  = aAN/a  V,. (10) 
Since most of the coefficients are common to the three recurrence relations, it is 

computationally efficient to use them simultaneously. The calculation starts at N = 0 
with A. = 1 and all other A, B and C coefficients zero for 0 > N > - M .  As each set 
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A N ,  B,, CN is computed, the ratios 

AEN = - A N / B N ,  ( r m ) N  = -C,/B, (11) 

are formed. These give the energy correction and the ( r m )  estimate, and as N increases 
they settle down to fairly stable values, the degree of stability increasing as the energy 
estimate nears an eigenvalue. When the first few digits of E have stabilised the run 
is repeated using the corrected energy E + A E ;  after a few iterations, accurate stable 
values of E and ( r”’ )  result. The calculation is simply an application to the Hill 
determinant method of the techniques recently explained in detail by Killingbeck 
(1985a, b) with reference to power series and finite difference methods. The computa- 
tion works well on an interactive microcomputer, since the operator can judge when 
the A E  value has converged sufficiently to start the next run; starting from a very 
rough E estimate it is possible to obtain accurate E and ( r ’ )  values in less than a 
minute for each state. 

By studying the form of the Schrodinger equation in one and two dimensions, we 
found that the algorithm described above can be used in one, two or three dimensions 
by making the appropriate choice of 1. In three dimensions 1 is the usual angular 
momentum value (0, 1,2, . . .). In two dimensions 1 is set equal to 1rn1 -f, where rn is 
the magnetic quantum number. In one dimension, with only even powers of r (i.e. x) 
in the potential, 1 = -1 gives an even parity state and 1 = 0 gives odd parity states. By 
comparison with the equations of Hikami and Brezin (1979) we also found that states 
of spherical symmetry in N dimensions can be treated by setting 1 = i( N - 3). 

We now consider the N - ‘  and I-’ type perturbation approaches where the Schrodin- 
ger equation, 

-D2+  + ( A F 2 +  Br4)+ = E+, (12) 

is used, A and B being very large positive numbers. Physically this represents a 
situation in which a particle of large mass vibrates at the bottom of the deep potential 
well in the potential. The potential minimum is at a position given by r6 = ( A j 2 B )  
and the potential, expressed with respect to that minimum as origin, takes the form 

V = ~ ( 2 B A 2 ) ” 3 + 6 ( 4 A B 2 ) ’ / 3 x 2 +  . . . .  (13) 

E,, =~(2BA2)’/3+6’’2(4AB2)1’6(2n+ l ) + .  . . , (14) 

Higher order terms could be calculated in principle, but the result (14) already suffices 
to give the first two terms in the N-’  and 1 . ‘  series which we require. 

As a test case we looked at the Schrodinger equation (6) in three dimensions with 
V ( r )  = A l - ’ r 4 ,  i.e. an 1 dependent potential. By setting r#J = r - ’+  in (6) and then using 
the change of variable r = R1”’ we obtain the Schrodinger equation (12) with A = 
! ( I +  l ) ,  B = 12A but with the eigenvalue IE instead of E on the right. Setting these A 
and B values into (14) and expanding in powers of 1 gives a series for the eigenvalue 
of ( 6 )  when V ( r )  = A l - ’ r 4 ,  

(15) 

For spherically symmetric states in N dimensions the Schrodinger equation (6) 

The harmonic oscillator approximation for the energy levels is thus 

E,,( / )  =5(2A)’ / ’ l+ (2A)’/3[l +6”’(2n + l)]+O(l-’) .  

generalises to the form 

-D2q5- (N- l ) r - ’Dr#J+V(r )4=Er#J .  (16) 
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The function dN+')/'q5 is found to obey the equation (6) for the case l = : ( N - 3 ) ,  
which leads to the rule already quoted. We can proceed as for the I-' theory, except 
that we use the potential V ( r )  = hN-'r4.  The change of variable r = RN'" leads to 
equation (12) with A = f (  N - 1)( N -3), B = AN'. The use of (14) then gives the result 

E,  ( N )  = NA + A 'I3[ (2n + 1)6"* - 21 + O( N- ' ) .  (17) 

Table 1. Lowest eigenvalue of equation (6) for selected I ( V = I-'r4). 

I E (4  

1 
2 
3 
4 
5 

10 
20 
40 
80 

160 
320 

7.108 4442 
8.605 6487 

10.347 316 
12.159 017 
14.000 561 
23.349 854 
42.196 812 
79.968 051 

155.550 00 
306.733 84 
609.111 54 

1.333 4087 
2.153 8224 
2.956 6586 
3.754 6576 
4.550 1492 
8.523 2960 

16.461 747 
32.336 271 
64.064 486 

127.580 62 
254.572 78 

Table 2. Lowest s state energy in N dimensions ( V =  N-'r4). 

1 
2 
3 
4 
5 

10 
20 
40 
80 

160 
320 

1.060 3621 
1.861 0921 
2.634 5461 
3.398 1502 
4.157 0434 
7.926 7576 

15.437 713 
30.443 495 
60.446 466 

120.447 97 
240.448 73 

0.362 022 65 
0.820 810 56 
1.300 3407 
1.788 1539 
2.280 0967 
4.762 1131 
9.752 1488 

19.746 934 
39.744 274 
79.742 938 

159.742 30 

Table 1 shows the ground-state energy for several 1 values in three dimensions and 
table 2 shows the lowest s state energy as a function of the number of dimensions. All 
numbers were calculated by the rapid Hill determinant method, a p value of 2 being 
adequate to give a good convergence rate throughout. The A value was set equal to 1. 

Numerical analysis of the results of table 1 gave for the first two coefficients in the 
series 

-a2 

& ( I )  = E ( n ) l "  
1 

the values ~ ( 0 )  = 1.889 88, E (  1) = 4.346. Using n = 0 in (15) gives ~ ( 0 )  = 1.889 8816, 
E (  1) = 4.346 0847, which confirms the accuracy of the Hill determinant eigenvalues. 
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For the N-' series, we extracted from table 2 the coefficients ~ ( 0 )  =0.750 000, ~ ( 1 )  = 
0.499 490, ~ ( 2 )  = -0.2441. Use of n = 0 in (17) gives ~ ( 0 )  =& ~ ( 1 )  = 0.499 4897. From 
the analytic results quoted by Yaffe (1983), we deduce an ~ ( 2 )  value of -0.244 1043, 
which again indicates the accuracy of the numerical energies. Furthermore, the ratios 
(r2) l - '  and ( r2)N- '  tend to the correct limiting values (A/2B)''3 given by the theory; 
at large 1 or N, the particle is localised at the bottom of the potential well. 

Further calculations were performed to check the Hill determinant method. First, 
it was checked that the (2n + 1 )  factors in (15) and (17)  do correctly describe the 
variation of the ~ ( 1 )  coefficient for the first few excited states. Second, the method 
was used for the potential x2. For a wide range of p values (2-10) the correct energies 
and (x') values of the harmonic oscillator were obtained. For p # 1 ,  the exact wavefunc- 
tion must be an infinite series, yet our results contradict the comment of Flessas and 
Anagnostatos (1982) that, for such a case, the Hill determinant approach would be 
unreliable. Third, we treated the special case potential -2x2 - 2x4+ x6 which Chaudhuri 
(1985) used in his work. We quickly found the two lowest even parity energies -1  
and 3.629 8265. The latter value correct Chaudhuri's value of 3.628 and shows that 
with the simple factor exp( -4j3x') in the wavefunction, the anomalous behaviour 
specially contrived by Chaudhuri can be avoided; higher energy levels are also calcu- 
lated easily. 

The calculations of this work were all carried out on a Sinclair Spectrum microcomputer 
and the author wishes to thank Sinclair Research for their assistance in his research. 
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